Copied to
clipboard

G = C23.23D18order 288 = 25·32

8th non-split extension by C23 of D18 acting via D18/D9=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.23D18, (C2×D4).5D9, (C2×C18).7D4, (C6×D4).19S3, (C2×C4).15D18, C18.48(C2×D4), Dic9⋊C414C2, (D4×C18).10C2, (C2×C12).215D6, (C22×C6).48D6, C18.29(C4○D4), C18.D48C2, (C2×C18).50C23, (C2×C36).60C22, (C22×Dic9)⋊5C2, C22.4(C9⋊D4), C95(C22.D4), C6.86(D42S3), C2.15(D42D9), C3.(C23.23D6), C22.57(C22×D9), (C22×C18).18C22, (C2×Dic9).15C22, C2.11(C2×C9⋊D4), C6.95(C2×C3⋊D4), (C2×C6).4(C3⋊D4), (C2×C6).207(C22×S3), SmallGroup(288,145)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C23.23D18
C1C3C9C18C2×C18C2×Dic9C22×Dic9 — C23.23D18
C9C2×C18 — C23.23D18
C1C22C2×D4

Generators and relations for C23.23D18
 G = < a,b,c,d,e | a2=b2=c2=d18=1, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 404 in 117 conjugacy classes, 44 normal (24 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C9, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C18, C18, C18, C2×Dic3, C2×C12, C3×D4, C22×C6, C22.D4, Dic9, C36, C2×C18, C2×C18, C2×C18, Dic3⋊C4, C6.D4, C22×Dic3, C6×D4, C2×Dic9, C2×Dic9, C2×C36, D4×C9, C22×C18, C23.23D6, Dic9⋊C4, C18.D4, C18.D4, C22×Dic9, D4×C18, C23.23D18
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D9, C3⋊D4, C22×S3, C22.D4, D18, D42S3, C2×C3⋊D4, C9⋊D4, C22×D9, C23.23D6, D42D9, C2×C9⋊D4, C23.23D18

Smallest permutation representation of C23.23D18
On 144 points
Generators in S144
(1 132)(2 142)(3 134)(4 144)(5 136)(6 128)(7 138)(8 130)(9 140)(10 143)(11 135)(12 127)(13 137)(14 129)(15 139)(16 131)(17 141)(18 133)(19 64)(20 56)(21 66)(22 58)(23 68)(24 60)(25 70)(26 62)(27 72)(28 65)(29 57)(30 67)(31 59)(32 69)(33 61)(34 71)(35 63)(36 55)(37 112)(38 81)(39 114)(40 83)(41 116)(42 85)(43 118)(44 87)(45 120)(46 89)(47 122)(48 73)(49 124)(50 75)(51 126)(52 77)(53 110)(54 79)(74 99)(76 101)(78 103)(80 105)(82 107)(84 91)(86 93)(88 95)(90 97)(92 117)(94 119)(96 121)(98 123)(100 125)(102 109)(104 111)(106 113)(108 115)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 19)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 28)(18 29)(37 96)(38 97)(39 98)(40 99)(41 100)(42 101)(43 102)(44 103)(45 104)(46 105)(47 106)(48 107)(49 108)(50 91)(51 92)(52 93)(53 94)(54 95)(55 131)(56 132)(57 133)(58 134)(59 135)(60 136)(61 137)(62 138)(63 139)(64 140)(65 141)(66 142)(67 143)(68 144)(69 127)(70 128)(71 129)(72 130)(73 82)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(109 118)(110 119)(111 120)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)
(1 17)(2 18)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(9 16)(19 36)(20 28)(21 29)(22 30)(23 31)(24 32)(25 33)(26 34)(27 35)(37 105)(38 106)(39 107)(40 108)(41 91)(42 92)(43 93)(44 94)(45 95)(46 96)(47 97)(48 98)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)(73 123)(74 124)(75 125)(76 126)(77 109)(78 110)(79 111)(80 112)(81 113)(82 114)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 121)(90 122)(127 136)(128 137)(129 138)(130 139)(131 140)(132 141)(133 142)(134 143)(135 144)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 112 28 89)(2 120 29 79)(3 110 30 87)(4 118 31 77)(5 126 32 85)(6 116 33 75)(7 124 34 83)(8 114 35 73)(9 122 36 81)(10 78 22 119)(11 86 23 109)(12 76 24 117)(13 84 25 125)(14 74 26 115)(15 82 27 123)(16 90 19 113)(17 80 20 121)(18 88 21 111)(37 56 46 141)(38 131 47 64)(39 72 48 139)(40 129 49 62)(41 70 50 137)(42 127 51 60)(43 68 52 135)(44 143 53 58)(45 66 54 133)(55 106 140 97)(57 104 142 95)(59 102 144 93)(61 100 128 91)(63 98 130 107)(65 96 132 105)(67 94 134 103)(69 92 136 101)(71 108 138 99)

G:=sub<Sym(144)| (1,132)(2,142)(3,134)(4,144)(5,136)(6,128)(7,138)(8,130)(9,140)(10,143)(11,135)(12,127)(13,137)(14,129)(15,139)(16,131)(17,141)(18,133)(19,64)(20,56)(21,66)(22,58)(23,68)(24,60)(25,70)(26,62)(27,72)(28,65)(29,57)(30,67)(31,59)(32,69)(33,61)(34,71)(35,63)(36,55)(37,112)(38,81)(39,114)(40,83)(41,116)(42,85)(43,118)(44,87)(45,120)(46,89)(47,122)(48,73)(49,124)(50,75)(51,126)(52,77)(53,110)(54,79)(74,99)(76,101)(78,103)(80,105)(82,107)(84,91)(86,93)(88,95)(90,97)(92,117)(94,119)(96,121)(98,123)(100,125)(102,109)(104,111)(106,113)(108,115), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,19)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(37,96)(38,97)(39,98)(40,99)(41,100)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,108)(50,91)(51,92)(52,93)(53,94)(54,95)(55,131)(56,132)(57,133)(58,134)(59,135)(60,136)(61,137)(62,138)(63,139)(64,140)(65,141)(66,142)(67,143)(68,144)(69,127)(70,128)(71,129)(72,130)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126), (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,36)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)(37,105)(38,106)(39,107)(40,108)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(73,123)(74,124)(75,125)(76,126)(77,109)(78,110)(79,111)(80,112)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(127,136)(128,137)(129,138)(130,139)(131,140)(132,141)(133,142)(134,143)(135,144), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,112,28,89)(2,120,29,79)(3,110,30,87)(4,118,31,77)(5,126,32,85)(6,116,33,75)(7,124,34,83)(8,114,35,73)(9,122,36,81)(10,78,22,119)(11,86,23,109)(12,76,24,117)(13,84,25,125)(14,74,26,115)(15,82,27,123)(16,90,19,113)(17,80,20,121)(18,88,21,111)(37,56,46,141)(38,131,47,64)(39,72,48,139)(40,129,49,62)(41,70,50,137)(42,127,51,60)(43,68,52,135)(44,143,53,58)(45,66,54,133)(55,106,140,97)(57,104,142,95)(59,102,144,93)(61,100,128,91)(63,98,130,107)(65,96,132,105)(67,94,134,103)(69,92,136,101)(71,108,138,99)>;

G:=Group( (1,132)(2,142)(3,134)(4,144)(5,136)(6,128)(7,138)(8,130)(9,140)(10,143)(11,135)(12,127)(13,137)(14,129)(15,139)(16,131)(17,141)(18,133)(19,64)(20,56)(21,66)(22,58)(23,68)(24,60)(25,70)(26,62)(27,72)(28,65)(29,57)(30,67)(31,59)(32,69)(33,61)(34,71)(35,63)(36,55)(37,112)(38,81)(39,114)(40,83)(41,116)(42,85)(43,118)(44,87)(45,120)(46,89)(47,122)(48,73)(49,124)(50,75)(51,126)(52,77)(53,110)(54,79)(74,99)(76,101)(78,103)(80,105)(82,107)(84,91)(86,93)(88,95)(90,97)(92,117)(94,119)(96,121)(98,123)(100,125)(102,109)(104,111)(106,113)(108,115), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,19)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(37,96)(38,97)(39,98)(40,99)(41,100)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,108)(50,91)(51,92)(52,93)(53,94)(54,95)(55,131)(56,132)(57,133)(58,134)(59,135)(60,136)(61,137)(62,138)(63,139)(64,140)(65,141)(66,142)(67,143)(68,144)(69,127)(70,128)(71,129)(72,130)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126), (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,36)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)(37,105)(38,106)(39,107)(40,108)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(73,123)(74,124)(75,125)(76,126)(77,109)(78,110)(79,111)(80,112)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(127,136)(128,137)(129,138)(130,139)(131,140)(132,141)(133,142)(134,143)(135,144), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,112,28,89)(2,120,29,79)(3,110,30,87)(4,118,31,77)(5,126,32,85)(6,116,33,75)(7,124,34,83)(8,114,35,73)(9,122,36,81)(10,78,22,119)(11,86,23,109)(12,76,24,117)(13,84,25,125)(14,74,26,115)(15,82,27,123)(16,90,19,113)(17,80,20,121)(18,88,21,111)(37,56,46,141)(38,131,47,64)(39,72,48,139)(40,129,49,62)(41,70,50,137)(42,127,51,60)(43,68,52,135)(44,143,53,58)(45,66,54,133)(55,106,140,97)(57,104,142,95)(59,102,144,93)(61,100,128,91)(63,98,130,107)(65,96,132,105)(67,94,134,103)(69,92,136,101)(71,108,138,99) );

G=PermutationGroup([[(1,132),(2,142),(3,134),(4,144),(5,136),(6,128),(7,138),(8,130),(9,140),(10,143),(11,135),(12,127),(13,137),(14,129),(15,139),(16,131),(17,141),(18,133),(19,64),(20,56),(21,66),(22,58),(23,68),(24,60),(25,70),(26,62),(27,72),(28,65),(29,57),(30,67),(31,59),(32,69),(33,61),(34,71),(35,63),(36,55),(37,112),(38,81),(39,114),(40,83),(41,116),(42,85),(43,118),(44,87),(45,120),(46,89),(47,122),(48,73),(49,124),(50,75),(51,126),(52,77),(53,110),(54,79),(74,99),(76,101),(78,103),(80,105),(82,107),(84,91),(86,93),(88,95),(90,97),(92,117),(94,119),(96,121),(98,123),(100,125),(102,109),(104,111),(106,113),(108,115)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,19),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,28),(18,29),(37,96),(38,97),(39,98),(40,99),(41,100),(42,101),(43,102),(44,103),(45,104),(46,105),(47,106),(48,107),(49,108),(50,91),(51,92),(52,93),(53,94),(54,95),(55,131),(56,132),(57,133),(58,134),(59,135),(60,136),(61,137),(62,138),(63,139),(64,140),(65,141),(66,142),(67,143),(68,144),(69,127),(70,128),(71,129),(72,130),(73,82),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(109,118),(110,119),(111,120),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126)], [(1,17),(2,18),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(9,16),(19,36),(20,28),(21,29),(22,30),(23,31),(24,32),(25,33),(26,34),(27,35),(37,105),(38,106),(39,107),(40,108),(41,91),(42,92),(43,93),(44,94),(45,95),(46,96),(47,97),(48,98),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72),(73,123),(74,124),(75,125),(76,126),(77,109),(78,110),(79,111),(80,112),(81,113),(82,114),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,121),(90,122),(127,136),(128,137),(129,138),(130,139),(131,140),(132,141),(133,142),(134,143),(135,144)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,112,28,89),(2,120,29,79),(3,110,30,87),(4,118,31,77),(5,126,32,85),(6,116,33,75),(7,124,34,83),(8,114,35,73),(9,122,36,81),(10,78,22,119),(11,86,23,109),(12,76,24,117),(13,84,25,125),(14,74,26,115),(15,82,27,123),(16,90,19,113),(17,80,20,121),(18,88,21,111),(37,56,46,141),(38,131,47,64),(39,72,48,139),(40,129,49,62),(41,70,50,137),(42,127,51,60),(43,68,52,135),(44,143,53,58),(45,66,54,133),(55,106,140,97),(57,104,142,95),(59,102,144,93),(61,100,128,91),(63,98,130,107),(65,96,132,105),(67,94,134,103),(69,92,136,101),(71,108,138,99)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order1222222344444446666666999121218···1818···1836···36
size1111224241818181836362224444222442···24···44···4

54 irreducible representations

dim11111222222222244
type++++++++++++--
imageC1C2C2C2C2S3D4D6D6C4○D4D9C3⋊D4D18D18C9⋊D4D42S3D42D9
kernelC23.23D18Dic9⋊C4C18.D4C22×Dic9D4×C18C6×D4C2×C18C2×C12C22×C6C18C2×D4C2×C6C2×C4C23C22C6C2
# reps123111212434361226

Matrix representation of C23.23D18 in GL6(𝔽37)

3600000
0360000
001000
000100
000013
0000036
,
3600000
0360000
001000
000100
000010
000001
,
100000
010000
001000
000100
0000360
0000036
,
100000
9360000
0026600
00312000
000010
00002436
,
36290000
2810000
00322700
0032500
0000310
000046

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,3,36],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,9,0,0,0,0,0,36,0,0,0,0,0,0,26,31,0,0,0,0,6,20,0,0,0,0,0,0,1,24,0,0,0,0,0,36],[36,28,0,0,0,0,29,1,0,0,0,0,0,0,32,32,0,0,0,0,27,5,0,0,0,0,0,0,31,4,0,0,0,0,0,6] >;

C23.23D18 in GAP, Magma, Sage, TeX

C_2^3._{23}D_{18}
% in TeX

G:=Group("C2^3.23D18");
// GroupNames label

G:=SmallGroup(288,145);
// by ID

G=gap.SmallGroup(288,145);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,254,219,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^18=1,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
×
𝔽